Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
PeerJ ; 12: e16969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410796

RESUMO

Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.


Assuntos
Briozoários , Urocordados , Animais , Reação em Cadeia da Polimerase/métodos , Monitoramento Biológico , Água do Mar , Urocordados/genética
2.
Sci Total Environ ; 917: 170301, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272094

RESUMO

The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.

3.
Sci Rep ; 13(1): 17061, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816793

RESUMO

Aotearoa New Zealand's Northern region is a major gateway for the incursion and establishment of non-indigenous species (NIS) populations due to high numbers of recreational and commercial vessels. This region also holds a unique marine ecosystem, home to many taonga (treasured) species of cultural and economic importance. Regular surveillance, eradication plans and public information sharing are undertaken by local communities and governmental organizations to protect these ecosystems from the impact of NIS. Recently, considerable investments went into environmental DNA (eDNA) research, a promising approach for the early detection of NIS for complementing existing biosecurity systems. We applied eDNA metabarcoding for elucidating bioregional patterns of NIS distributions across a gradient from harbors (NIS hotspots) to open seas (spreading areas). Samples were collected during a research cruise sailing across three Aotearoa New Zealand harbors, Waitemata, Whangarei and Pewhairangi (Bay of Islands), and their adjacent coastal waters. The small-ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes were screened using the online Pest Alert Tool for automated detection of putative NIS sequences. Using a probabilistic modelling approach, location-dependent occupancies of NIS were investigated and related to the current information on species distribution from biosecurity surveillance programs. This study was collaboratively designed with Maori partners to initiate a model of co-governance within the existing science system.


Assuntos
Conservação dos Recursos Naturais , DNA Ambiental , DNA Ambiental/genética , Ecossistema , Nova Zelândia , Oceanos e Mares
4.
CRISPR J ; 6(4): 316-324, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439822

RESUMO

Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.


Assuntos
Sistemas CRISPR-Cas , Aprendizado Profundo , Sistemas CRISPR-Cas/genética , Edição de Genes , RNA , Inteligência Artificial , Monitoramento Biológico , Ecossistema
5.
Biofouling ; 39(4): 427-443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37341323

RESUMO

Complex microbial communities colonize plastic substrates over time, strongly influencing their fate and potential impacts on marine ecosystems. Among the first colonizers, diatoms play an important role in the development of this 'plastiphere'. We investigated 936 biofouling samples and the factors influencing diatom communities associated with plastic colonization. These factors included geographic location (up to 800 km apart), duration of substrate submersion (1 to 52 weeks), plastics (5 polymer types) and impact of artificial ageing with UV light. Diatom communities colonizing plastic debris were primarily determined by their geographic location and submersion time, with the strongest changes occurring within two weeks of submersion. Several taxa were identified as early colonizers (e.g. Cylindrotheca, Navicula and Nitzschia spp.) with known strong adhesion capabilities. To a lesser extent, plastic-type and UV-ageing significantly affected community composition, with 14 taxa showing substrate-specificity. This study highlights the role of plastics types-state for colonization in the ocean.


Assuntos
Diatomáceas , Plásticos , Plásticos/química , Ecossistema , Biofilmes , Análise Espaço-Temporal
6.
PeerJ ; 11: e15210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151294

RESUMO

Non-native fish have been shown to have deleterious impacts on freshwater ecosystems in New Zealand. Early detection is critical for their effective management. Traditional capture-based techniques may not detect newly introduced fish, especially if they are present in low abundance. Molecular techniques that target environmental DNA (eDNA) have been shown, in many instances, to be more sensitive, cost-effective and require lower sampling effort. However, appropriate sampling strategies are needed to ensure robust and interpretable data are obtained. In this study we used droplet digital PCR assays to investigate the presence of two non-native fish in New Zealand, the European perch (Perca fluviatilis) and rudd (Scardinius erythrophthalmus) in three small lakes. Samples were collected from water and surface sediment at near-shore and mid-lake sites. Probabilistic modelling was used to assess the occupancy of fish eDNA and develop guidance on sampling strategies. Based on the detection probability measures from the present study, at least six sites and five replicates per site are needed to reliably detect fish eDNA in sediment samples, and twelve sites with eight replicates per site for water samples. The results highlight the potential of developing monitoring and surveillance programs adapted to lakes, that include the use of assays targeting eDNA. This study focused on small shallow lakes, and it is likely that these recommendations may vary in larger, deeper, and more geomorphologically complex lakes, and this requires further research.


Assuntos
DNA Ambiental , Percas , Animais , Lagos , DNA Ambiental/genética , Ecossistema , Percas/genética , Água
7.
Nucleic Acids Res ; 51(W1): W438-W442, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207328

RESUMO

Advances in high-throughput sequencing (HTS) technologies and their increasing affordability have fueled environmental DNA (eDNA) metabarcoding data generation from freshwater, marine and terrestrial ecosystems. Research institutions worldwide progressively employ HTS for biodiversity assessments, new species discovery and ecological trend monitoring. Moreover, even non-scientists can now collect an eDNA sample, send it to a specialized laboratory for analysis and receive in-depth biodiversity record from a sampling site. This offers unprecedented opportunities for biodiversity assessments across wide temporal and spatial scales. The large volume of data produced by metabarcoding also enables incidental detection of species of concern, including non-indigenous and pathogenic organisms. We introduce an online app-Pest Alert Tool-for screening nuclear small subunit 18S ribosomal RNA and mitochondrial cytochrome oxidase subunit I datasets for marine non-indigenous species as well as unwanted and notifiable marine organisms in New Zealand. The output can be filtered by minimum length of the query sequence and identity match. For putative matches, a phylogenetic tree can be generated through the National Center for Biotechnology Information's BLAST Tree View tool, allowing for additional verification of the species of concern detection. The Pest Alert Tool is publicly available at https://pest-alert-tool-prod.azurewebsites.net/.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Ecossistema , Espécies Introduzidas , Biodiversidade , Internet , Filogenia , Ensaios de Triagem em Larga Escala , DNA Ambiental/análise , Aplicativos Móveis
8.
Mol Ecol Resour ; 23(2): 440-452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36226834

RESUMO

Environmental DNA (eDNA) analyses are powerful for describing marine biodiversity but must be optimized for their effective use in routine monitoring. To maximize eDNA detection probabilities of sparsely distributed populations, water samples are usually concentrated from larger volumes and filtered using fine-pore membranes, often a significant cost-time bottleneck in the workflow. This study aimed to streamline eDNA sampling by investigating plankton net versus bucket sampling, direct versus sequential filtration including self-preserving filters. Biodiversity was assessed using metabarcoding of the small ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes. Multispecies detection probabilities were estimated for each workflow using a probabilistic occupancy modelling approach. Significant workflow-related differences in biodiversity metrics were reported. Highest amplicon sequence variant (ASV) richness was attained by the bucket sampling combined with self-preserving filters, comprising a large portion of microplankton. Less diversity but more metazoan taxa were captured in the net samples combined with 5 µm pore size filters. Prefiltered 1.2 µm samples yielded few or no unique ASVs. The highest average (~32%) metazoan detection probabilities in the 5 µm pore size net samples confirmed the effectiveness of preconcentration plankton for biodiversity screening. These results contribute to streamlining eDNA sampling protocols for uptake and implementation in marine biodiversity research and surveillance.


Assuntos
DNA Ambiental , Animais , DNA Ambiental/genética , DNA Ambiental/análise , Código de Barras de DNA Taxonômico/métodos , Biodiversidade , Plâncton/genética , Monitoramento Ambiental/métodos
9.
Front Physiol ; 14: 1265879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38425477

RESUMO

New Zealand's green-lipped mussel (Perna canaliculus) is an ecologically and economically important species. Marine heatwaves are increasing in frequency around NZ's coastline, and these events are correlated with increased stress and mortality of some aquaculture species. This study aimed to identify general biomarkers of heat stress in P. canaliculus and to assess whether responses differed between genetically distinct selectively bred mussels. We exposed three families of selectively bred mussels (families A, B and C) to three seawater temperature regimes in the laboratory: 1) a "control" treatment (ambient 12°C), 2) a 26°C heat challenge with a subsequent recovery period, and 3) a sustained 26°C heat challenge with no recovery. We investigated whether the survival, immune response (hemocyte concentration and viability, oxidative stress and total antioxidant capacity), hemocyte gene expression and gill microbiome differed between the families during the temperature challenges. In the sustained heat-stress treatment, family A had the highest survival rate (42% compared with 25% and 5% for families C and B, respectively). Gene expression levels significantly shifted during thermal stress and differed between families, with family A more dissimilar than families B and C. Family C had substantially more genes impacted by temperature treatment and timepoint than the other families, while family B had very little genes/pathways that responded to thermal stress. Genes related to heat shock proteins and immune responses (e.g., AIF1, CTSC, TOLL8, CASP9, FNTA, AHCY, CRYAB, PPIF) were upregulated in all families during heat stress. Microbiome species-richness differed between families before and during heat-stress, with family A having a distinctly different microbiome flora than the other families. Microbial diversity changed similarly in all families exposed to prolonged heat-stress, with species of Vibrio and Campylobacter increasing in these mussels. Our study highlights the use of non-lethal sampling of hemocytes as a diagnostic tool to explore the immune response and gene expression of selectively bred mussels, to predict their response to ocean warming. This approach can identify potential thermotolerant candidates for further selective breeding, which may increase the resilience of the mussel aquaculture industry in a warming ocean.

10.
PeerJ ; 10: e14549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570004

RESUMO

Marine plastic debris (MPD) are a global threat to marine ecosystems. Among countless ecosystem impacts, MPD can serve as a vector for marine 'hitchhikers' by facilitating transport and subsequent spread of unwanted pests and pathogens. The transport and spread of these non-indigenous species (NIS) can have substantial impacts on native biodiversity, ecosystem services/functions and hence, important economic consequences. Over the past decade, increasing research interest has been directed towards the characterization of biological communities colonizing plastic debris, the so called Plastisphere. Despite remarkable advances in this field, little is known regarding the recruitment patterns of NIS larvae and propagules on MPD, and the factors influencing these patterns. To address this knowledge gap, we used custom-made bioassay chambers and ran four consecutive bioassays to compare the settlement patterns of four distinct model biofouling organisms' larvae, including the three notorious invaders Crassostrea gigas, Ciona savignyi and Mytilus galloprovincialis, along with one sessile macro-invertebrate Spirobranchus cariniferus, on three different types of polymers, namely Low-Linear Density Polyethylene (LLDPE), Polylactic Acid (PLA), Nylon-6, and a glass control. Control bioassay chambers were included to investigate the microbial community composition colonizing the different substrates using 16S rRNA metabarcoding. We observed species-specific settlement patterns, with larvae aggregating on different locations on the substrates. Furthermore, our results revealed that C. savignyi and S. cariniferus generally favoured Nylon and PLA, whereas no specific preferences were observed for C. gigas and M. galloprovincialis. We did not detect significant differences in bacterial community composition between the tested substrates. Taken together, our results highlight the complexity of interactions between NIS larvae and plastic polymers. We conclude that several factors and their potential interactions influenced the results of this investigation, including: (i) species-specific larval biological traits and ecology; (ii) physical and chemical composition of the substrates; and (iii) biological cues emitted by bacterial biofilm and the level of chemosensitivity of the different NIS larvae. To mitigate the biosecurity risks associated with drifting plastic debris, additional research effort is critical to effectively decipher the mechanisms involved in the recruitment of NIS on MPD.


Assuntos
Microbiota , Plásticos , Animais , Plásticos/química , Larva , RNA Ribossômico 16S/genética , Polietileno , Poliésteres
11.
Microbiol Spectr ; 10(6): e0195922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314927

RESUMO

For over a decade, Pacific oyster mortality syndrome (POMS), a polymicrobial disease, induced recurring episodes of massive mortality affecting Crassostrea gigas oysters worldwide. Recent studies evidenced a combined infection of the ostreid herpesvirus (OsHV-1 µVar) and opportunistic bacteria in affected oysters. However, the role of the oyster microbiota in POMS is not fully understood. While some bacteria can protect hosts from infection, even minor changes to the microbial communities may also facilitate infection and worsen disease severity. Using a laboratory-based experimental infection model, we challenged juveniles from 10 biparental oyster families with previously established contrasted genetically based ability to survive POMS in the field. Combining molecular analyses and 16S rRNA gene sequencing with histopathological observations, we described the temporal kinetics of POMS and characterized the changes in microbiota during infection. By associating the microbiota composition with oyster mortality rate, viral load, and viral gene expression, we were able to identify both potentially harmful and beneficial bacterial amplicon sequence variants (ASVs). We also observed a delay in viral infection resulting in a later onset of mortality in oysters compared to previous observations and a lack of evidence of fatal dysbiosis in infected oysters. Overall, these results provide new insights into how the oyster microbiome may influence POMS disease outcomes and open new perspectives on the use of microbiome composition as a complementary screening tool to determine shellfish health and potentially predict oyster vulnerability to POMS. IMPORTANCE For more than a decade, Pacific oyster mortality syndrome (POMS) has severely impacted the Crassostrea gigas aquaculture industry, at times killing up to 100% of young farmed Pacific oysters, a key commercial species that is cultivated globally. These disease outbreaks have caused major financial losses for the oyster aquaculture industry. Selective breeding has improved disease resistance in oysters, but some levels of mortality persist, and additional knowledge of the disease progression and pathogenicity is needed to develop complementary mitigation strategies. In this holistic study, we identified some potentially harmful and beneficial bacteria that can influence the outcome of the disease. These results will contribute to advance disease management and aquaculture practices by improving our understanding of the mechanisms behind genetic resistance to POMS and assisting in predicting oyster vulnerability to POMS.


Assuntos
Crassostrea , Herpesviridae , Microbiota , Humanos , Animais , Crassostrea/genética , Crassostrea/microbiologia , RNA Ribossômico 16S/genética , Herpesviridae/genética , Surtos de Doenças , Microbiota/genética
12.
Sci Rep ; 12(1): 12408, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859115

RESUMO

Symbiodiniaceae are a diverse group of dinoflagellates, the majority of which are free-living and/or associated with a variety of protists and other invertebrate hosts. Maintenance of isolated cultures is labour-intensive and expensive, and cryopreservation provides an excellent avenue for their long-term storage. We aimed to cryopreserve 15 cultured isolates from six Symbiodiniaceae genera using dimethyl sulfoxide (DMSO) as the cryoprotectant agent (CPA). Under 15% DMSO, 10 isolates were successfully cryopreserved using either rapid freezing or controlled-rate freezing. Cultures that failed or had low survival, were subjected to (1) a reduction of CPA to 10%, or (2) increased salinity treatment before freezing. At 10% DMSO, three further isolates were successfully cryopreserved. At 15% DMSO there were high cell viabilities in Symbiodinium pilosum treated with 44 parts per thousand (ppt) and 54 ppt culture medium. An isolate of Fugacium sp. successfully cryopreserved after salinity treatments of 54 ppt and 64 ppt. Fatty acid (FA) analyses of S. pilosum after 54 ppt salinity treatment showed increased saturated FA levels, whereas Fugacium sp. had low poly-unsaturated FAs compared to normal salinity (34 ppt). Understanding the effects of salinity and roles of FAs in cryopreservation will help in developing protocols for these ecologically important taxa.


Assuntos
Dimetil Sulfóxido , Dinoflagelados , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Ácidos Graxos , Salinidade
13.
Sci Rep ; 12(1): 12810, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896561

RESUMO

The frequency and intensity of cyanobacterial blooms is increasing worldwide. Multiple factors are implicated, most of which are anthropogenic. New Zealand provides a useful location to study the impacts of human settlement on lake ecosystems. The first humans (Polynesians) arrived about 750 years ago. Following their settlement, there were marked landscape modifications which intensified after European settlement about 150 years ago. The aims of this study were to reconstruct cyanobacterial communities in six lakes over the last 1000 years and explore key drivers of change. Cyanobacterial environmental DNA was extracted from sediment cores and analysed using metabarcoding and droplet digital PCR. Cyanobacteria, including potentially toxic or bloom forming species, were already present in these lakes prior to human arrival, however their overall abundance was low. Total cyanobacteria abundance and richness increased in all lakes after European settlement but was very pronounced in four lakes, where bloom-forming taxa became dominant. These shifts occurred concomitant with land-use change. The catchment of one deteriorated lake is only moderately modified, thus the introduction of non-native fish is posited as the key factor driving this change. The paleolimnological approach used in this study has enabled new insights into timing and potential causes of changes in cyanobacterial communities.


Assuntos
Cianobactérias , Lagos , Animais , Cianobactérias/genética , Ecossistema , Eutrofização , Humanos , Lagos/microbiologia , Nova Zelândia , Reação em Cadeia da Polimerase
14.
Front Microbiol ; 13: 885585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531301

RESUMO

Fish disease surveillance methods can be complicated and time consuming, which limits their value for timely intervention strategies on aquaculture farms. Novel molecular-based assays using droplet digital Polymerase Chain Reaction (ddPCR) can produce immediate results and enable high sample throughput with the ability to multiplex several targets using different fluorescent dyes. A ddPCR tetraplex assay was developed for priority salmon diseases for farmers in New Zealand including New Zealand Rickettsia-like organism 1 (NZ-RLO1), NZ-RLO2, Tenacibaculum maritimum, and Yersinia ruckeri. The limit of detection in singleplex and tetraplex assays was reached for most targets at 10-9 ng/µl with, respectively, NZ-RLO1 = 0.931 and 0.14 copies/µl, NZ-RLO2 = 0.162 and 0.21 copies/µl, T. maritimum = 0.345 and 0.93 copies/µl, while the limit of detection for Y. ruckeri was 10-8 with 1.0 copies/µl and 0.7 copies/µl. While specificity of primers was demonstrated in previous studies, we detected cross-reactivity of T. maritimum with some strains of Tenacibaculum dicentrarchi and Y. ruckeri with Serratia liquefaciens, respectively. The tetraplex assay was applied as part of a commercial fish disease surveillance program in New Zealand for 1 year to demonstrate the applicability of tetraplex tools for the salmonid aquaculture industry.

15.
Microorganisms ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208733

RESUMO

Understanding the historical onset of cyanobacterial blooms in freshwater bodies can help identify their potential drivers. Lake sediments are historical archives, containing information on what has occurred in and around lakes over time. Paleolimnology explores these records using a variety of techniques, but choosing the most appropriate method can be challenging. We compared results obtained from a droplet digital PCR assay targeting a cyanobacterial-specific region of the 16S rRNA gene in sedimentary DNA and cyanobacterial pigments (canthaxanthin, echinenone, myxoxanthophyll and zeaxanthin) analysed using high-performance liquid chromatography in four sediment cores. There were strong positive relationships between the 16S rRNA gene copy concentrations and individual pigment concentrations, but relationships differed among lakes and sediment core depths within lakes. The relationships were more consistent when all pigments were summed, which we attribute to different cyanobacteria species, in different lakes, at different times producing different suites of pigments. Each method had benefits and limitations, which should be taken into consideration during method selection and when interpreting paleolimnological data. We recommend this biphasic approach when making inferences about changes in the entire cyanobacterial community because they yielded complementary information. Our results support the view that molecular methods can yield results similar to traditional paleolimnological proxies when caveats are adequately addressed.

16.
Sci Total Environ ; 812: 152385, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942258

RESUMO

Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated representation of environmental conditions and contain high microbial biomass. Based on these attributes, we hypothesized that bacteria associated with lake trophic states could be identified and used to develop an index that would not be confounded by non-nutrient stressor gradients. Metabarcoding (16S rRNA gene) was used to assess bacterial communities present in surface sediments from 259 non-saline lakes in New Zealand encompassing a range of trophic states from alpine microtrophic lakes to lowland hypertrophic lakes. A subset of lakes (n = 96) with monitoring data was used to identify indicator amplicon sequence variants (ASVs) associated with different trophic states. A total of 10,888 indicator taxa were identified and used to develop a Sediment Bacterial Trophic Index (SBTI), which signficantly correlated (r2 = 0.842, P < 0.001) with the Trophic Lake Index. The SBTI was then derived for the remaining 163 lakes, providing new knowledge of the trophic state of these unmonitored lakes. This new, robust DNA-based tool provides a rapid and cost-effective method that will allow a greater number of lakes to be monitored and more effectively managed in New Zealand and globally. The SBTI could also be applied in a paleolimnological context to investigate changes in trophic status over centuries to millennia.


Assuntos
Bactérias , Lagos , Bactérias/genética , Sedimentos Geológicos , Humanos , Nova Zelândia , RNA Ribossômico 16S
17.
Aquat Toxicol ; 243: 106069, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968986

RESUMO

Contaminants are often at low concentrations in ecosystems and their effects on exposed organisms can occur over long periods of time and across multiple generations. Alterations to subcellular mechanistic pathways in response to exposure to contaminants can provide insights into mechanisms of toxicity that methods measuring higher levels of biological may miss. Analysis of the whole transcriptome can identify novel mechanisms of action leading to impacts in exposed biota. The aim of this study was to characterise how exposures to copper, benzophenone and diclofenac across multiple generations altered molecular expression pathways in the marine copepod Gladioferens pectinatus. Results of the study demonstrated differential gene expression was observed in cultures exposure to diclofenac (569), copper (449) and benzophenone (59). Pathways linked to stress, growth, cellular and metabolic processes were altered by exposure to all three contaminants with genes associated with oxidative stress and xenobiotic regulation also impacted. Protein kinase functioning, cytochrome P450, transcription, skeletal muscle contraction/relaxation, mitochondrial phosphate translocator, protein synthesis and mitochondrial methylation were all differentially expressed with all three chemicals. The results of the study also suggested that using dimethyl sulfoxide as a dispersant influenced the transcriptome and future research may want to investigate it's use in molecular studies. Data generated in this study provides a first look at transcriptomic response of G. pectinatus exposed to contaminants across multiple generations, future research is needed to validate the identified biomarkers and link these results to apical responses such as population growth to demonstrate the predictive capacity of molecular tools.


Assuntos
Copépodes , Pectinatus , Poluentes Químicos da Água , Animais , Copépodes/genética , Ecossistema , Transcriptoma , Poluentes Químicos da Água/toxicidade
18.
Mol Ecol Resour ; 22(2): 519-538, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398515

RESUMO

Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by enabling rapid, accurate and holistic detection of species within complex biological samples. Research institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and comparability of results across research groups. An international experiment was conducted to assess the consistency of metabarcoding results derived from identical samples and primer sets using varying laboratory procedures. Homogenized biofouling samples collected from four coastal locations (Australia, Canada, New Zealand and the USA) were distributed to 12 independent laboratories. Participants were asked to follow one of two HTS library preparation workflows. While DNA extraction, primers and bioinformatic analyses were purposefully standardized to allow comparison, many other technical variables were allowed to vary among laboratories (amplification protocols, type of instrument used, etc.). Despite substantial variation observed in raw results, the primary signal in the data was consistent, with the samples grouping strongly by geographical origin for all data sets. Simple post hoc data clean-up by removing low-quality samples gave the best improvement in sample classification for nuclear 18S rRNA gene data, with an overall 92.81% correct group attribution. For mitochondrial COI gene data, the best classification result (95.58%) was achieved after correction for contamination errors. The identified critical methodological factors that introduced the greatest variability (preservation buffer, sample defrosting, template concentration, DNA polymerase, PCR enhancer) should be of great assistance in standardizing future biodiversity studies using metabarcoding.


Assuntos
Código de Barras de DNA Taxonômico , Laboratórios , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 18S
19.
PeerJ ; 9: e12157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692247

RESUMO

Freshwater eels are ecologically, and culturally important worldwide. The New Zealand long-finned eel (Anguilla dieffenbachii) and short-finned eel (Anguilla australis) are apex predators, playing an important role in ecosystem functioning of rivers and lakes. Recently, there has been a national decline in their populations due to habitat destruction and commercial harvest. The emergence of targeted environmental DNA detection methodologies provides an opportunity to enhance information about their past and present distributions. In this study we successfully developed species-specific droplet digital Polymerase Chain Reaction (ddPCR) assays to detect A. dieffenbachii and A. australis DNA in water and sediment samples. Assays utilized primers and probes designed for regions of the mitochondrial cytochrome b and 16S ribosomal RNA genes in A. dieffenbachii and A. australis, respectively. River water samples (n = 27) were analyzed using metabarcoding of fish taxa and were compared with the ddPCR assays. The presence of A. dieffenbachii and A. australis DNA was detected in a greater number of water samples using ddPCR in comparison to metabarcoding. There was a strong and positive correlation between gene copies (ddPCR analyses) and relative eel sequence reads (metabarcoding analyses) when compared to eel biomass. These ddPCR assays provide a new method for assessing spatial distributions of A. dieffenbachii and A. australis in a range of environments and sample types.

20.
Front Microbiol ; 12: 706214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504478

RESUMO

The Pacific oyster Crassostrea gigas is the world's most cultivated oyster and seed supply is heavily reliant on hatchery production where recurring mass mortality events are a major constraint. Outbreaks of bacterial infection via microalgal feed are frequently implicated in these mortalities. This study assessed the effects of feeding compromised microalgae to developing oyster larvae. Intentionally 'stressed' (high pH) or non-stressed microalgae were fed to 11 day-old oyster larvae at two feeding rations for 96 h, followed by a recovery period. Biological endpoints of larval performance were measured following the 96 h exposure and subsequent recovery. Bacterial communities associated with the microalgae feed, rearing seawater, and the oyster larvae, were characterized and correlated with effects on oyster fitness parameters. Feeding stressed algae to oyster larvae for 96 h increased the occurrence of deformities (>70% vs. 20% in control), reduced feeding and swimming ability, and slowed development. Following the recovery period, fewer larvae reached pediveliger stage (2.7% vs. 36% in control) and became spat (1.5% vs. 6.6% in control). The quantity of stressed algae supplied to oyster larvae also influenced overall larval performance, with high feeding rations generally causing greater impairment than low rations. Bacterial profiling using 16S rRNA showed that most bacterial families characterized in larval tissue were also present in larval rearing seawater and in the microalgae feed (98%). The rearing seawater showed the highest bacterial richness compared to the larval and the microalgal compartments, regardless of feeding regime. In larval tissue, bacterial richness was highest in stressed and high-feed treatments, and negatively correlated with larval fitness parameters. These results suggest significant dysbiosis induced by compromised feed and/or increased feed ration. Several bacterial genera (e.g., Halomonas, Marinomonas) were strongly associated with impaired larval performance while the presence of genera in larvae including Vibrio was closely associated with overfeeding. Our research demonstrated that metabarcoding can be effectively used to identify microbiota features associated with larval fitness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...